the given points). Then solve the differential equation for each point.

$$
\text { 1) } \begin{aligned}
d y & =\frac{1}{x} d x \quad(1,-1) \text { and }(-1 \\
\int d y & =\int \frac{1}{x} d x \\
y & =\ln |x|+C \\
|x| & = \begin{cases}x & , x \geqslant 0 \\
-x & , x<0\end{cases}
\end{aligned}
$$

$$
(1,-1) \text { and }(-1,1)
$$

2) $d y=\sqrt{x+2} d x \quad ; \quad(0,-1)$

$$
\begin{aligned}
\int d y & =\int \sqrt{x+2} d x \quad \begin{array}{l}
u=x+2 \\
d u=d x
\end{array} \\
y & =\int \sqrt{u} d u \\
y & =\frac{2}{3} u^{\frac{3}{2}}+C \\
y & =\frac{2}{3} \sqrt{(x+2)^{3}}+C \\
-1 & =\frac{2}{3} \sqrt{(0+2)^{3}}+C \\
-1 & =\frac{2}{3} \sqrt{8}+C \quad-1: \frac{4 \sqrt{2}}{3}+C
\end{aligned}
$$

$$
y=\frac{2}{3} \sqrt{(x+2)^{3}}+\frac{-3-4 \sqrt{2}}{3}
$$

$$
\begin{aligned}
& \text { 3) } d y=\frac{2 x-3}{2 y} d x \\
& \int 2 y d y=\int(2 x-3) d x \\
& y^{2}=x^{2}-3 x+c \\
& y= \pm \sqrt{x^{2}-3 x+c}
\end{aligned}
$$

$(-1,2)$ and $(-2,-1)$

$$
\begin{aligned}
& y=\sqrt{x^{2}-3 x} \\
& y=-\sqrt{x^{2}-3 x-9}
\end{aligned}
$$

4) $d y=(y+2) d x \quad ; \quad(2,1)$

$$
y=\frac{3}{e^{2}} e^{x}-2
$$

